Mobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats.

نویسندگان

  • Markus Schafflhuber
  • Nicola Volpi
  • Anke Dahlmann
  • Karl F Hilgers
  • Francesca Maccari
  • Peter Dietsch
  • Hubertus Wagner
  • Friedrich C Luft
  • Kai-Uwe Eckardt
  • Jens Titze
چکیده

The idea that an osmotically inactive Na(+) storage pool exists that can be varied to accommodate states of Na(+) retention and/or Na(+) loss is controversial. We speculated that considerable amounts of osmotically inactive Na(+) are lost with growth and that additional dietary salt excess or salt deficit alters the polyanionic character of extracellular glycosaminoglycans in osmotically inactive Na(+) reservoirs. Six-week-old Sprague-Dawley rats were fed low-salt (0.1%; LS) or high-salt (8%; HS) diets for 1 or 4 wk. At their death, we separated the tissues and determined their Na(+), K(+), and water content. Three weeks of growth reduced the total body Na(+) content relative to dry weight (rTBNa(+)) by 23%. This "growth-programmed" Na(+) loss originated from the bone and the completely skinned and bone-removed carcasses. The Na(+) loss was osmotically inactive (45-50%) or osmotically active (50-55%). In rats aged 10 wk, compared with HS, 4 wk of LS reduced rTBNa(+) by 9%. This dietary-induced Na(+) loss was osmotically inactive ( approximately 50%) and originated largely from the skin, while approximately 50% was osmotically active. LS for 1 wk did not reduce skin Na(+) content. The mobilization of osmotically inactive skin Na(+) with long-term salt deprivation was associated with decreased negatively charged skin glycosaminoglycan content and thereby a decreased water-free Na(+) binding capacity in the extracellular matrix. Our data not only serve to explain discrepant results in salt balance studies but also show that glycosaminoglycans may provide an actively regulated interstitial cation exchange mechanism that participates in volume and blood pressure homeostasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osmotically inactive skin Na+ storage in rats.

Compared with age-matched men, women are resistant to the hypertensive effects of dietary NaCl; however, after menopause, the incidence of salt-sensitive hypertension is similar in women and men. We recently suggested that osmotically inactive Na+ storage contributes to the development of salt-sensitive hypertension. The connective tissues, including those immediately below the skin that may se...

متن کامل

Internal sodium balance in DOCA-salt rats: a body composition study.

The idea that Na(+) retention inevitably leads to water retention is compelling; however, were Na(+) accumulation in part osmotically inactive, regulatory alternatives would be available. We speculated that in DOCA-salt rats Na(+) accumulation is excessive relative to water. Forty female Sprague-Dawley rats were divided into four subgroups. Groups 1 and 2 (controls) received tap water or 1% sal...

متن کامل

Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model.

Recent evidence suggested that Na can be stored in an osmotically inactive form. We investigated whether osmotically inactive Na storage is reduced in a rat model of salt-sensitive (SS) hypertension. SS and salt-resistant (SR) Dahl-Rapp rats as well as Sprague-Dawley (SD) rats were fed a high (8%)- or low (0.1%)-NaCl diet for 4 wk (n = 10/group). Mean arterial pressure (MAP) was measured at the...

متن کامل

Extrarenal Na+ balance, volume, and blood pressure homeostasis in intact and ovariectomized deoxycorticosterone-acetate salt rats.

Water-free Na+ storage may buffer extracellular volume and mean arterial pressure (MAP) in spite of Na+ retention. We studied the relationship among internal Na+, K+, water balance, and MAP in Sprague-Dawley rats, with or without deoxycorticosterone-acetate (DOCA) salt, with or without ovariectomy (OVX). The rats were fed a low-salt (0.1% NaCl) or high-salt (8% NaCl) diet for 5 weeks. DOCA salt...

متن کامل

The Effect of Gallic Acid on Cognitive Dysfunctions with Intrauterine Growth Restriction in Rats

Background: Intrauterine growth restriction (IUGR) lead to abnormalities in fetal central nervous system, till hippocampal and cortical cells became apoptotic. The goal of this research is investigating the effects of Gallic acid on improvement of cognitive impairments and nuclear factor kappa B (NFƙB) in animal model of IUGR. Material and Methods: In this experimental study, 32 female rats fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 292 5  شماره 

صفحات  -

تاریخ انتشار 2007